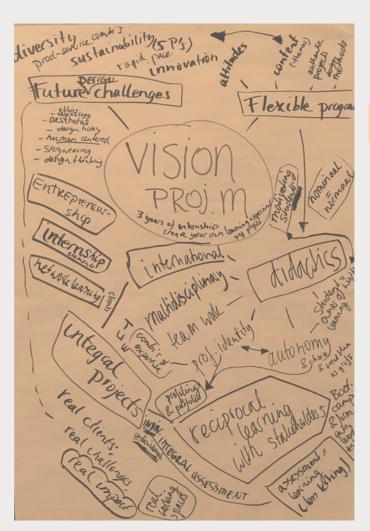
CURRICULUM CHANGES TOWARDS AGILITY AND FLEXIBILITY

Suzanne Brink

The Hague University of Applied Sciences/Leiden University

In collaboration with Fredrik Georgsson (Umeå University), Carl-Johan Carlsson (Chalmers University), Gareth Thomson (Ashton University), Wilfried Admiraal (Leiden University), Ellen Sjoer, Miranda de Hei & the THUAS IDE-team (THUAS)


IDE CURRICULUM M

WORKING GROUP CURRICULUM AGILITY

SURVEY CURRENT CURRICULUM CHANGE AND INNOVATION

Industrial Design Engineering

Flexible, Modular Curriculum
Running since 2018

CDIO

100%

Competencybased

Teaching & Assessment

Reciprocal, Multi and interdisciplinary Learning

Innovation projects

within diverse, real contexts

Individual
Semester Choice
Cycle

½ year units

Why: direct, strategic & educational

More attention for entrepreneurship in the program.	Keep project-based, client- involved, active learning elements of the program for Networking	Half year modules with less testing	
Internship is missed in program.	Keep 30EC minor space	New competence	
IIR (international Insights Research) project: can be either less than 12 EC it has now, or can be combined with internship and get full module credits.	Make a flexible program facilitating collaborations with other programs, faculties, universities and projects	set central and make sure each half year students practice all 5 competences Freedom of choice to	
Entrepreneurship in Innovation needs to move to the major.	Work in modular entities that make exchange as easy as	specialize or broaden to increase intrinsic motivation	
Build in ' free space ' for interesting projects that are offered during the school year.	possible Offer students the opportunity to work on design projects all the way	T-shaped, U-shaped or W-shaped profile	
Restore balance in the program.	to the implementation/ operation phase	Better Study progress & flow	

Why (flexible)? Education research

THUAS' lector Frans Meijers on developing professional identity of students identified three main conditions for developing a professional identity:

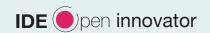
- learning should take place in an authentic setting,
- students should have the opportunity to choose part of their study activities according to their personal developing goals
- there should be a professional, reciprocal dialogue between students and teachers about their development.

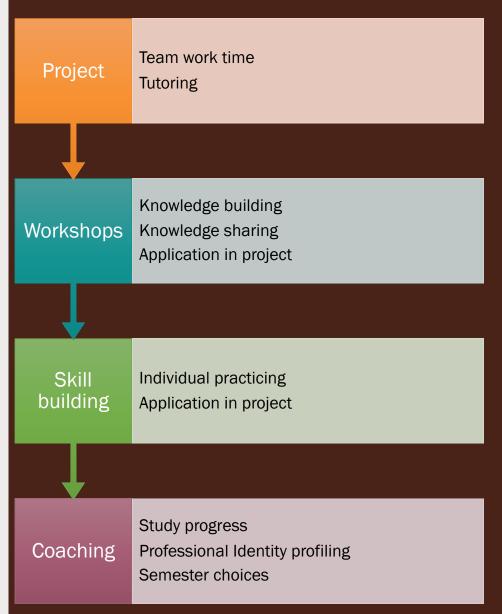
Trend research (Youngworks): what is ■ important for our current/future students:

- Creativity
- Autonomy
- Room for negotiation
- Entrepreneurship
- Social learning
- Create your own job

Educational Researcher Janke Cohen on the necessary counterintuitive measures in assessment to increase study progress and effective learning Assessments every 5 weeks, as students start preparing 3-4 weeks beforehand.

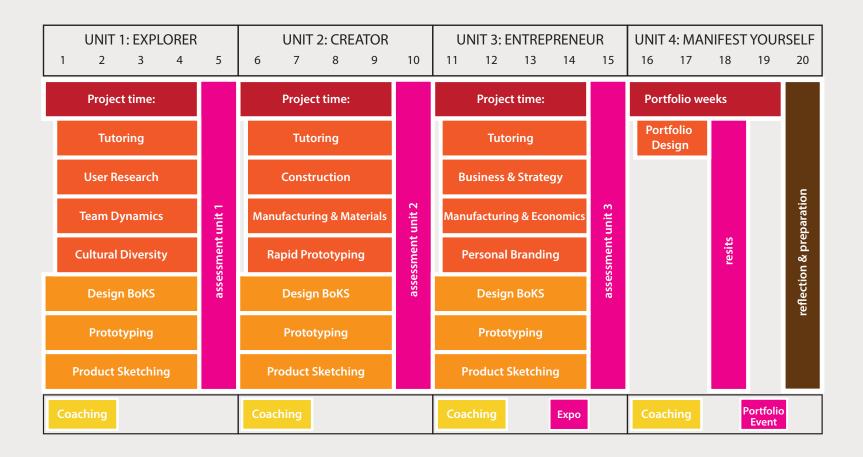
- More than 6 tests/
 assessments per year results in
 50% more chance of unjust
 fails for tests.
- No competition of other tests
- Resits are within the same semester, falls in what could be cool portfolio project time.
 - Independent working weeks for 4% more graduates per year.

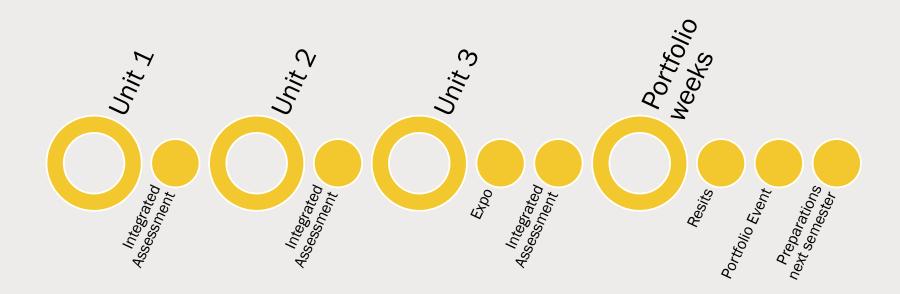

Co-creation


We co-created the curriculum with our lecturers, work field, alumni, students, prospective students & educational advisors

We schooled and trained ourselves to be able to teach in a flexible curriculum (coach training for all, assessment trails and calibration sessions etc)

Student Journey Map Semester Choices for Professional Identity Development





semester structure within a unit

Basics of IDE

semester structure

One programme-wide Rubric Test Matrix

Design Expertise levels	ENTRANCE level	NOVICE (apply strict rules)	ADVANCED BEGINNER (general thruths)	COMPETENT (problem solver)	THE MASTER (post bachelor)
Competencies	Linear processing, guessing and assuming	Checking the boxes, following steps, explaining	Connecting design steps, reflecting	evaluating, reflecting,	developing and opening new ways, creating new domains
1. Do Research					
problems and reason analytically	input literally	Student states clie nt's and user needs and problems, based on general arguments	nes and interprets stakeholder needs and problems, based on relevant arguments	the problem definition, based on triangulated arguments	problem definition with client based on logical, experience- based analytical arguments
knowledge by	Student finds existing general knowledge	Student investigate s the user, context, needs and problems by given methods	s insights by experimentation, combining appropriate methods of the	knowledge by selecting and combining the valuable outcomes of his/her	deep for each new project by investigating and
contexts into account (societal, environmental, entrepreneurial)	Student identifies societal, environmental and/or entrepreneurial factors	Student investigate s and breakes down the context in the analysis phase	s insights by taking external context into account	and evaluates different societal, environmental and	nuanced image of external
research in a	Student applies basic literature research methods to get insights	Student follows the steps of a human- centered research method	Student selects different research approaches to analyse technical and human centered aspects of the product/service and its context	chosen methods for human centered and technical	
research using a	Student spells correct and uses correct grammar.	Student reports on research using the required research format and reference standard	nts the research by combining an d including the	ppropriate formats	practical research standard as the

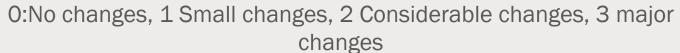
2. Design & Engineer					
vision and	Student formulates a design brief from a personal perspective	nd lists basic	Student formulates a design brief following self-selected (research) methods		Student formulates a design brief after initial research in close collaboration with the stakeholders.
2.2. Use an iterative process with diverging and converging methods and techniques	design process to be a 'straight line' process from A to B	basic (given)	Student selects and employs proper methods for the diverging and converging phases in the design process	Student selects, ad apts and employs m ultiple methods for an iterative, diverging and converging design process	compiles,
2.3. Integrate human, market, technological, and context values during the design process	from personal values	Student identifies and integrates values of a requested or given context during the design process	design within different contexts.	Student assesses the integrated values of the design within different contexts by research and applied throughout the design process.	student offers a complete overview of the (complexity of the) context, prioritizes and pinpoints key
desirability, viability, and feasibility while	Student defines desirability, viability and feasibility	Student classifies d esirability, viability and feasibily aspects of the design	Student analyses and incorporates desirability, viability and feasibily into the design	he design based on evaluation of	
optimize ideas,	up ideas and builds simple models	Student generates first ideas, concepts and (testing) prototypes as requested in the course using given techniques	Student generates id eas, concepts and (testing) prototypes using appr opriate techniques, showing optimised detail in every iteration.	oncepts and prototypes in detail,	optimizes
z.o. Evaluate lacas,	Student generates ideas	investigation/resear ch and selects the	research, and weighs and selects generated ideas and concepts based on	tests the design throughout the design process, based on a	Student continuously adapts list of requirements based on new insights by iterations, and verifies and tests specifications.

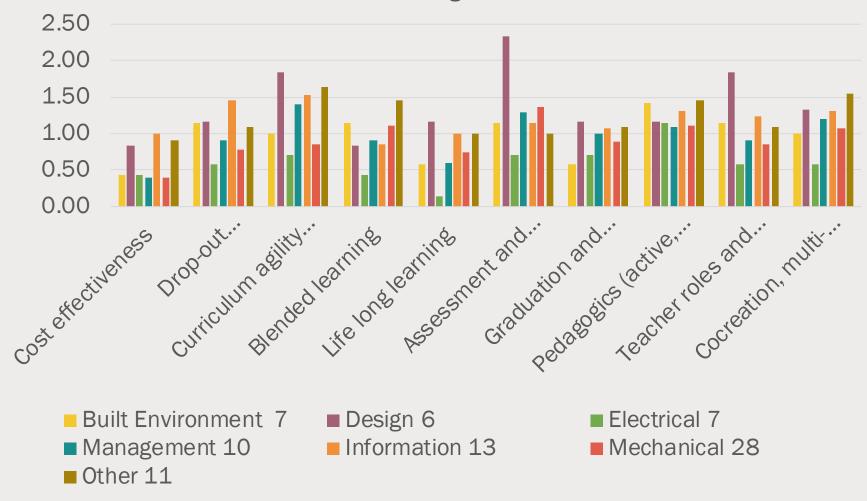
One programme-wide Rubric Test Matrix

3. Organise & Manage					
3.1. Work methodologically	Student follows a format	Student recognizes the methodological steps offered in the course and explains their relevance and differences	and employs		his/her own
3.2. Collaborate within a design team in a multidisciplinary (international) setting	Student (occasionaly) takes part in team work	Student actively participates in group work and shares constructive feedback with team members	members from the perspective of a co-established	Student iteratively evaluate s multiple team roles and dynamics and initiates and ap plies new strategies where and when needed	signature roles as a designer in multidisciplinary
3.3. Show resourcefulness, flexibility and willingness to make decisions in fuzzy (complex) contexts	Student makes decisions when asked to	Student lists possible uncertainties and suggests argumented decisions on how to deal with these	ecisions made earlier in the design process	iteratively evaluate s decisions made throughout the	decision making strategy for an iterative design
3.4. Show entrepreneurship or intrapreneurship	Student shows curiosity	Student outlines entrepreneurial components to the design project	Student applies i ntra- or entrepreneurial skills in the design process	Student formulates and integrates crite ria for intra- or entrepreneurial aspects in a design process	elaborates on the intra- or entrepreneurial
3.5. Practice project, stakeholder, time and resource management	Student plans his study activities	Student plans a first year project, lists the activities and modifies the planning to available resources, stakeholder availability, and unforeseen events during the process	and modifies a project planning and explains the adjustments	Student designs and integrates a project planning and prioritises activities based on	Student elaborat es within the project management on planning, prioriti es, stakeholder opportunties/de mands and (financial) resources
3.6. Break down and model systems and select relevant approaches	Student breaks down a model in several aspects based on association	Student labels relev ant components of a system and explains the interrelations and applications	Student models a system and its	Student evaluates his/her model of a system with relevant arguments and defends the chosen approach towards the	Student compiles a system with detailed aspects

4. Communicate					
4.1. Manifest/presen t yourself in a (semi) professional setting	Student intuitively presents him/herself to a teacher, client or user.	Student presents his/her work to stakeholders in a clear and understandable way	work and vision on the work to stakeholders in a	Student manifests him/herself as a designer presenting his/her impact and role towards stakeholders.	manifests him/herself as a
4.2. Communicate within a team on team dynamics and (your) role	Student mentions behaviors of team members	Student examines team dynamics, connecting actions to achievements.	on dynamics during team work and concludes bottlenecks and	the team	effective
4.3. Make deliverables tangible in a refined, communicative way	Student makes deliverables tangible in an intuitive way, based on availabe formats or personal taste	Student generates comprehensive audio/visual deliverables	Student creates communicative deliverables designed in a consistent style	Student experiment s to find a consistent style fit for the purpose and target group and develops a personal style	manifests a consistent style
4.4. Communicate in a foreign language and/or in an international setting	Student is interested to speak in a foreign language, and/or is eager to learn about cultural differences in an international setting	English and identifies the impact of cultural	cultural differences in	Student incorporate s cultural differences in managing communication and content of the project	manifests his/her approach in communication
5. Learn	· · · · · · · · · ·				
5.1. Reflect on your role in projects and your impact on society as an innovator	Student mentions generic reflections when asked	Student illustrates r eflection on role and impact by answering provided detailled questions (reflection-after- action)	interprets roles and impact, drawing conclusions from	Student independently eval uates role and impact and modifies the design process accordingly (reflect ion-in-action).	reflection in design process and creates professional
5.2 Develop and adapt learning strategies	Student recognizes learning strategies	Student describes hi s/her learning strategies	Student uses learning strategies and demonstrates a developing learning curve	Student justifies learning strategies in different subjects and adapts these to new contexts	Student develops learning strategies based on self awareness, subject and learning context
5.3. Transfer and integrate acquired knowledge and experience in projects	Student recalls offered knowledge and experiences	Student discusses a cquired knowledge and experience in the project	acquired knowledge and	Student analyzes a cquired knowledge and experiences and applies them in new contexts and projects	cquired knowledge and

IDE's Reflection on using the CDIO framework for curriculum innovation


Standards and syllabus are very useful!


- Standard 2: Add intercultural competences beyond communicating in a different language, plus teamwork with (authentic) stakeholders
- Standard 5: Make it international, multi-disciplinary design-implement experience
- Standard 8: Active, Authentic, Autonomous Learning ... Lifelong Learning Didactics
- Standard 11: Integrated Assessment for learning (and no more than 6 exams per year)
- Standard 12: Closing the evaluation circle by co–creation

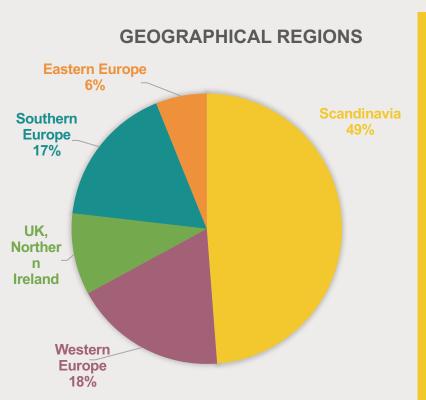
Self-evaluation

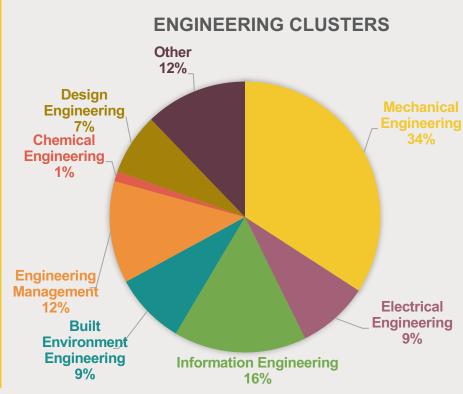
Rubric: We need a score of '6' in the CDIO when co-developing a standard in co-creation instead of checking with the stakeholders afterwards.

What we improve our curricula on these days

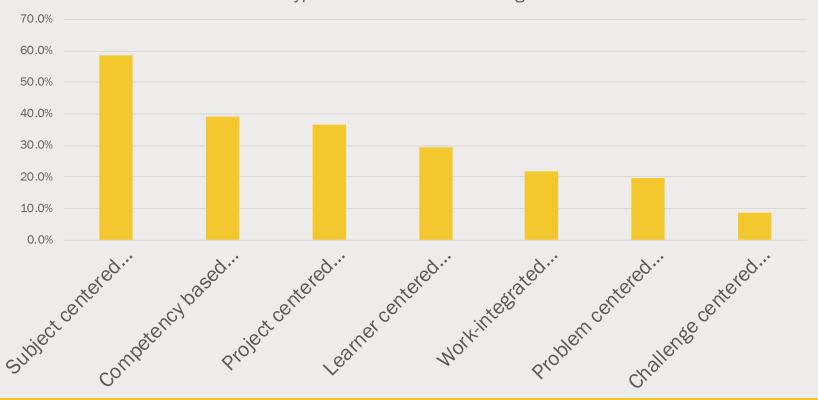
Survey

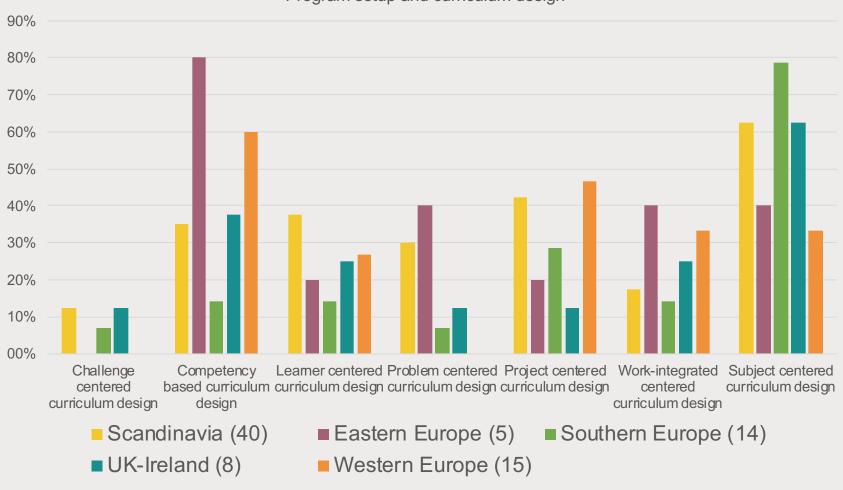
We asked engineering programs about the kind of curriculum they have, the current curriculum improvements and priorities they are making and the barriers they perceive along that way.

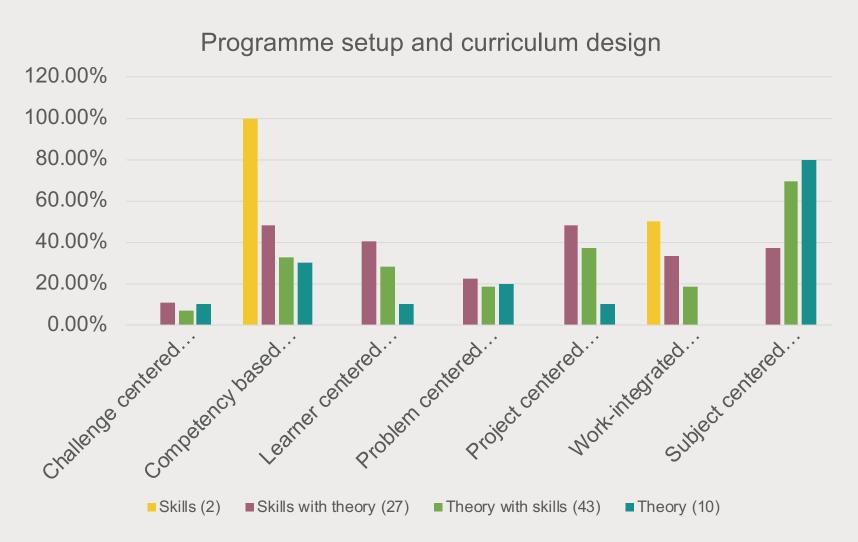







82 Respondents


Prevailing Curricular Design


Curriculum Structure by Region

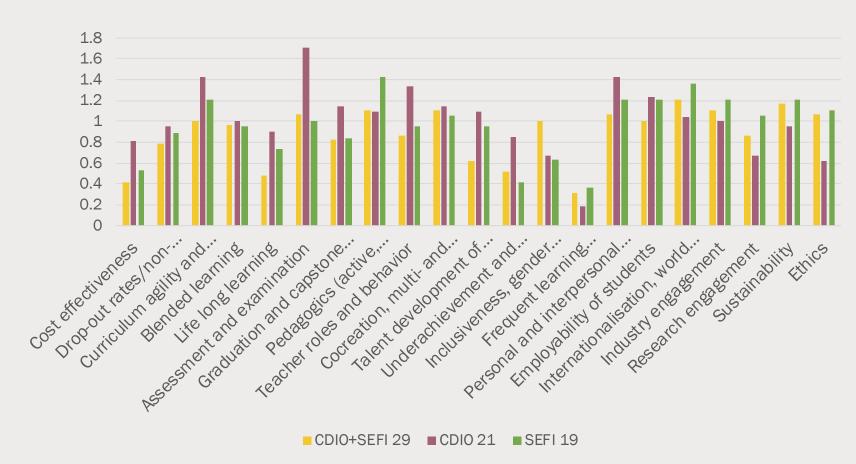
Program setup and curriculum design

CDIO Seminar – October 2019 – Suzanne Brink - Curriculum Changes towards Agility and Flexibility

Curriculum Structure x Curriculum Focus

Current Curriculum Improvements

Proceedings of SEFI and CDIO conferences 2018, 2017, 2016:


- Cost effectiveness
- Drop-out rates/non-completion rates
- Curriculum Agility and Flexibility
- Blended learning
- Lifelong learning
- Assessment and Examination
- Graduation and Capstone Projects
- Pedagogics (Active, Authentic, High-Impact etc. learning)
- Teacher Roles and Behaviour
- Cocreation
- Multi- and Interdisciplinary Learning,
- Talent Development of Students
- Ethics

- Underachievement & Mediocre
 Student Work
- Inclusiveness
- Gender Equality
- Cultural Diversity
- Frequent Learning Disabilities (ADHD, autism, dyslexia)
- Personal and Interpersonal Skills of Students
- Employability of Students
- Internationalisation
- World Citizenship
- Industry Engagement
- Research Engagement
- Sustainability

Differences between CDIO and SEFI respondents

What has been changed in the last 3-5 years.

0:No changes, 1 Small changes, 2 Considerable changes, 3 major changes

CDIO Seminar - October 2019 - Suzanne Brink - Curriculum Changes towards Agility and Flexibility

Most Mentioned Major Changes

- Employability of Students
- Curriculum Agility and Flexibility
- Assessment and Examination
- Industry Engagement
- Personal and Interpersonal Skills
- Internationalisation and World Citizenship

Not mentioned:

- Underachievement and mediocre student results
- Frequent learning disabilities

"An agile curriculum is

...responsive and adaptable to changes in societal, industrial, and student characteristics and needs, by having the capacity to change structures, learning outcomes, and learning activities in a timely manner."

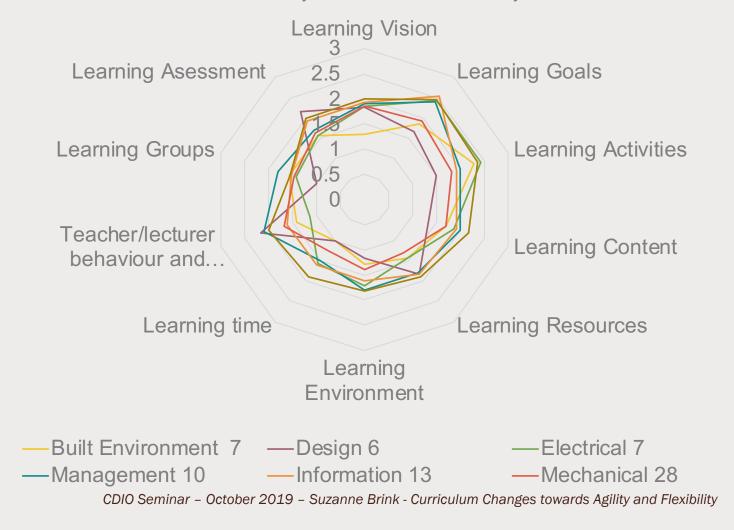
Kanazawa

Curriculum Agility =

CDIO Seminar - October 2019 - Suzanne Brink - Curriculum Changes towards Agility and Flexibility

Flexibility within a Curriculum

What students learn:

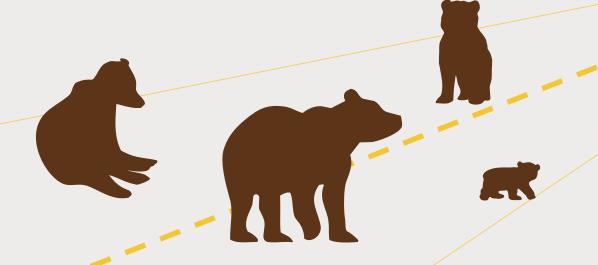

- Freedom of choice in the content
- Fitting to their background

How students learn:

- Own time, place and pace
- Own way
- Own level

Priorities in curriculum development

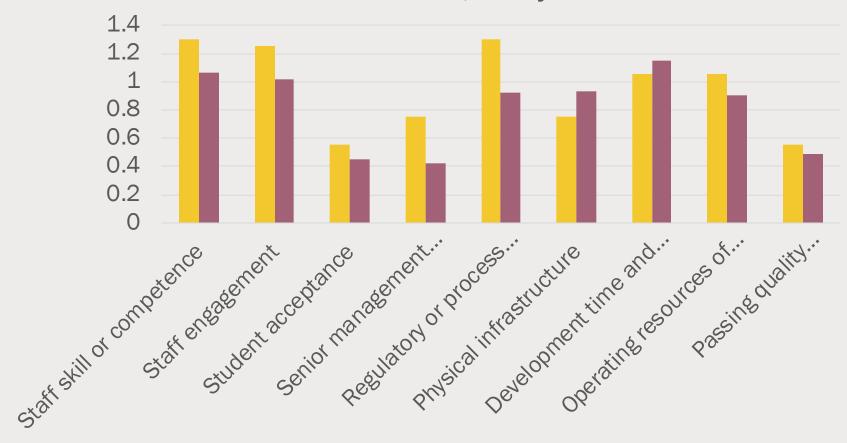
Priorities in the dimensions of Curriculum Development 0: Never, 1: Occasionally, 2: A lot, 3: Continuously



An agile curriculum is...

- aware of the changing needs of current students
- aware of the changing characteristics/demographics of students
- capable to react to those needs of students but also those of stakeholders, staff and society
- focused on developing more stable *competencies* via dynamic content
- changing to reflect societal needs for the discipline(s)
- allowing for changes within an acceptable time-frame
- facilitating multi- and interdisciplinary activities in the learning environment
- using evidence-based responsive approaches and content
- doing all of this in a timely, friction-free way

Bears on the road


- Internal, external and work field approval
- 5 year cycle of developing a curriculum
- Stability
- Slow staff changes

Perceived Barriers in Curriculum Improvement

- Staff Skill or Competence
- Staff Engagement
- Student Acceptance
- Senior Management Acceptance
- Regulatory or Process Inertia and Blocks
- Physical Infrastructure
- Development Time and Costs
- Operating Resources of the New Model
- Passing Quality Assurance or Accreditation.

Barriers: 0-no barrier, 2-Major barrier

■ Not done changes 20
■ Done changes 62

CDIO Seminar - October 2019 - Suzanne Brink - Curriculum Changes towards Agility and Flexibility

La Rochelle

What do you think is really important in an agile curriculum?

Important goals

- Reactivity to change in need, professional etc.
- Ability to develop content, add new topics
- Adopt to new societal needs while meeting quality requirements
- To listen to our work field partners
- To adopt to new technology
- To adopt to the student
- To adopt to the public

Important ingredients

 Build an education where the student builds a matrix of ILOs so that a) progression and b) depth within a subject area is warranted

- Have real time connection with industry needs
- Organise mechanisms to listen to stakeholders
- Include coaching
- Include peer interaction
- Patience and hard work

Important constraints

- Students becomes "independent" of time and place
- Need for a sufficient amount of electives
- It should be socially driven and/or flexible
- Student coaching has to be subject specific

What curriculum changes have you seen to increase the agility?

- Starting a programme with a new name, so people will not have fixed ideas what must be in the programme (such is the case in e.g.
 'Mechanical Engineering') and thus there is room for new things
- Inserting project courses: You can fill in a new project every time the course runs (subject courses are harder to change)
- Adopting a true competency-based (assessment)
 approach, so students are not assessed on certain specific knowledge, but can prove a competency with any kind of (dynamic) knowledge.
- Some free space in credits & time to do whatever students see fit to achieve personal goals
- Elective everywhere, liberal art style of programmes
- New strategy development from 3-year to 5-year programme
- CDIO projects answering industrial needs

- Community of practice
- No compulsory courses in a study programme
- Our quality systems (ISO 9001)
- Teachers using PBL method
- Student seminar
 - University college is living lab
 - 3+2 years could be separated
- New programs who inspire old programs
 - Micro-credentials
 - Combining with other partner universities

What barriers do you see to make your curriculum more agile?

- Accreditation (2)
- Accreditation agency
- Accreditation boards
- Administration (2)
- Board of exams
- Elephants: the old school traditional managers
- Organizational thresholds.
- Teachers
- Faculty motivation
- Mathematics teachers
- Unease with the unknown
- Resistance to change
- Culture within a team of lecturers

- Defense of 'own values' related to identity.
- Shortage of faculty skills needed for the change
- Internal organization
- Scheduling
- External organization
- Minister of higher education
- Process (it takes 2-3 years to change a course)
- Finances could be problematic
- How do you get progression between courses if courses can be taken in any order
- How can you afford small groups choosing a course

Århus

Curriculum Agility Working Group Day

Advantages Curriculum Agility

For curriculum

- Allows for educational trial and error of students
- Allows for teaching interdisciplinary perspectives

For student:

- More exploration possible (Rochester University)
- More meaning-finding (Rochester University)
- Helps them find their strengths and passion (University of the Western-Cape)
- Allows for a change of direction (University of the Western-Cape)
- Increases the numbers finishing their studies (University of the Western-Cape)

Challenges of Curriculum Agility

- Disruptive or transformational innovation
- Initiative fatigue
- Careful planning and effective leadership
- Making change stick
- Etc.

Objectives

provide an outline for identifying characteristics of an agile education

analyse good practice

suggest routines that need to be established

discuss how this work relates to the CDIO standards

Principles for an agile education:

- Stakeholder dialogues to identify the changing needs
- Keep organization and governance needs into account
- Appropriate decision making, (dis)approval processes
- Initiatives and execution, stakeholder engagement throughout
- Entrepreneurial management, proactive change culture
- Innovation, responsive to change
- Pedagogy and didactics, scholarship of teaching
- Customized, flexible curriculum design, learning outcomes and student profiles

- No separate standard is necessary
- map the principles against the CDIO standards in a matrix
- when necessary, formulate new (specific) emphasis and additional good practices within the standards
- to be continued.... @ CDIO Bangkok

Next actions

What do you take home from this presentation?

If you can spare 7 minutes, your input is still desired:

Curricular Changes

in European Higher Engineering & Design Education

https://tinyurl.com/y6xq5bk5

This survey aims to map current curriculum designs and curriculum changes in Europe's engineering education, in connection to membership of international engineering networks and current curriculum innovation trends.