STUDENTS' STRESS AND SATISFACTION IN CDIO EXPERIENCES: FINDING THE BALANCE

Rocío Rodríguez-Rivero, Luis Ballesteros-Sánchez, Andrés Díaz Lantada, Jesús Juan Ruíz, Miguel Ángel Peláez García, Ana Moreno Romero, Enrique Chacón Tanarro, Rafael Borge García, Rafael Ramos Díaz

Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid, Madrid, Spain

ABSTRACT

The Conceive-Design-Implement-Operate (CDIO) educational framework has been revolutionizing the world of engineering education since its inception at the beginning of this century. Its approach to business reality, encouraging comprehensive and contextualized project-based learning, has been the subject of numerous praises in recent years. However, working within CDIO initiatives requires maturity on the part of the students, who go from working individually to being part of a team, with the management of conflicts that this transition entails. This new way of working, together with the imposition of delivery dates and the fact of facing new design challenges, which students tend to approach in too many cases through a trial and error strategy, can lead to a higher workload and relevant doses of stress. This workload stress needs to be compensated by the levels of students' satisfaction, especially as regards their understanding of the learning process and gained outcomes so that the experience can be considered successful in terms of its positive impact on students. This study seeks to assess students' satisfaction and their relationship with the workload they face. The assessment is done in a set of interwoven courses (Bioengineering Design and MedTech) related to the development and delivery of technological solutions for health challenges. These courses are respectively included in the Master's Degree in Industrial Engineering and the Master's Degree in Engineering Management at the ETSI Industriales from the Universidad Politécnica de Madrid. The results show that if students feel supported by the group of professors participating in the subjects, their level of satisfaction is very high, regardless of the workload stress, which is not perceived so high. The CDIO methodology is thus reinforced, establishing itself as a set of practices that bring the future engineers closer to their next steps in professional life through a satisfactory process.

KEYWORDS

CDIO as Context, workload stress, students' satisfaction, Project Based Learning, Biomedical Engineering, Standards 7, 8, 11, 12

INTRODUCTION

The Conceive-Design-Implement-Operate (CDIO) educational framework is an international initiative in revolutionizing and reforming the previous world of engineering education. This framework, based on Project-Based Learning (PBL), is aligned to the current business reality. Nevertheless, the business world is a riddle of difficulties, and to work with engineering projects requires coping with stress, as previous studies have shown (Anantatmula, 2015; Ballesteros et al., 2019). Are the engineering students prepared to deal with these stressful and, sometimes, overloading the role of pretending to be professionals? And, most important, do they value the role-play experience as satisfactory?

This research aims to discover the self-perception of the work overload and satisfaction by asking the students of the "Bioengineering Design" and "Medtech" courses. These courses are part of the *Industriales Ingenia*, a compulsory course for master's students that born as part of the CDIO initiatives, and they are included in the first year of the Master's Degree in Industrial Engineering, and the Master's Degree in Engineering Management, respectively. The students from both courses work together during the whole year in seven teams under the CDIO framework and with the PBL methodology. This particularity of mixing students from different Masters is something unique in the ETSI Industriales from the Universidad Politécnica de Madrid, and it is interesting to discover if it causes more stress or satisfaction in the students.

LITERATURE REVIEW

Work-life balance

The idea of work-life balance emerged at the 1970s coinciding with the incorporation of the women into paid employment (Dizaho et al., 2017) but has gone beyond women in the last decades, and it has been particularly noticeable in recent generations as millennials, the great advocates of working to live and not living to work.

Although the definition of work-life balance is still not clear in the literature due to some authors link this concept to the care of dependent relatives while others open it to enjoy the free time (Gregory et al., 2013), it can be understood as the compromise between work and non-work activities. There are numerous studies that show that when there are mismatches in that balance, symptoms such as lower levels of job satisfaction and work performance, absenteeism, stress increase, and burnout, begin to appear (Beauregard & Henry, 2009; Chatrakul Na Ayudhya et al., 2017). These symptoms have been studied in detail in professional environments, especially in the healthcare area in the recent years (Holland et al., 2019; Yehya et al., 2020), probably because previous research pointed to healthcare workers as more stressed than people in other professions (Theorell et al., 1990).

Nevertheless, work-life balance has been scarcely studied in the higher education environment, with some exceptions focused on academic staff (Catano et al., 2019; Fontinha et al., 2019) where the high levels of stress have gone increasing over the last years, turning a motivational work by a demanding combination of excel at teaching as well as research.

Stress and satisfaction at the university

The effects of stress suffered by professors in some way are also transmitted to the students, who face the increasingly demanding educational systems from an awkward position since they are not used to cope with stressful situations (Amirkhan et al., 2019).

The tendency to bridge the educational methodologies with the professional reality requires maturity and coping by the students, defining coping as the cognitive and behavioral efforts to deal with stressful situations (Folkman & Lazarus, 1985). Some of these situations are the overload of credits in the semester, the number of tasks to develop in different teams, and conflict management in the working groups. Despite these situations, there are also a few studies about how stress influences the students (Karakas, 2015; Weidner et al., 1996).

Something similar happens around the satisfaction levels at university; there is little published about how students and professors are having their expectations fulfilled. Concerning professors, the study of Fontinha et al. (2019), reveals that although academic life provides flexibility, the higher number of extra hours causes dissatisfaction in the academic community. Regarding the students, despite the stress of facing new challenges, some students show dissatisfaction related to a large number of educational activities and the scarce linkage between the conceptual issue - taught at university - and the experiential learning - demanding by the labor market - (Cavallone et al., 2020). Moreover, work in teams uses to be appreciated by students, but the research of Backlund & Garvare (2019) shown they feel more comfortable with an individual assessment within the group.

METHODOLOGY

To contribute to the scarce literature on stress and satisfaction in students, this research aims to assess both levels in a course conceived under the CDIO standards.

The method consisted of the design and distribution of a questionnaire to discover the opinion of the master's students attending to the Bioengineering Design and MedTech course, developed entirely under the CDIO practices.

The questionnaire had two sections. The first section collected information about the gender, country, the program they are coursing, and their previous formation. The second section had two different parts based on the level of agreement of the students about the causes of the stress level (first part) and the reasons for the satisfaction level (second part). The level of agreement was measured by a 1-7 Likert-scale (fully agree to fully disagree).

The section dedicated to the stress levels has partially followed the items designed by Spielberg (1994) in his *Job Stress Survey* (JSS) (Spielberger & Reheiser, 1994), adapting the stressors to the academic context. The JSS assesses the levels of stress measuring the severity and frequency of each of the 30 stress items.

The session devoted to the satisfaction levels includes items that have also been adapted from the study about job satisfaction of nurses, designed by Kekana et al. (2007).

The total number of students attending the course is 44 (31 from Bioengineering Design and 13 from MedTech), and the number of responses is 14 (10 from Bioengineering Design and 4 from MedTech). It is a reduced number, but it has the responses of two persons from every

team, to homogenize the levels of stress and satisfaction of all the teams. These two persons act as representatives of their teams. Table 1 shows the main characteristics of the sample.

The analysis of the responses from the questionnaire has been made with the assistance of IBM SPSS software. Stress and satisfaction levels were analyzed by means of a descriptive statistic. The descriptive statistic was completed with the correlation matrix. To keep the simplicity of the descriptive analysis, the most usual Pearson's coefficient was used. Correlation coefficients were obtained in three stages: firstly, the correlation matrix for the stress variables, secondly, the correlations between the satisfaction variables, and finally, the cross-correlations between the stress and satisfaction variables. Although the number of observations is very small (14), many significant coefficients have been obtained. These are indicated in the corresponding tables with a double asterisk.

G	ender	Ν	laster	Country of previous studies			
Male	Female	Industrial Engineering.	Engineering Management	Spain	France	Perú	
11	3	10	4	12	1	1	

Table 1.	Profile	of the	respondents	

		Mean	S. D.	Median
SS1	Team members not doing their job	1,642	,744	1,5
SS2	Inadequate support by professors	1,785	,699	2
SS3	Insufficient team members to handle assignment	1,571	,513	2
SS4	Lack of recognition for good work	1,571	,937	1
SS5	Frequent Interruptions in the course development	2,500	1,160	2
SS6	Dealing with crisis situations within the team	1,785	,801	2
SS7	Inappropriate behavior by my team colleagues	1,142	,534	1
SS8	Inappropriate behavior by professors	1,428	,937	1
SS9	Poorly motivated other teams in the course	2,214	1,050	2
SS10	Poorly motivated team colleagues	2,714	1,138	2
SS11	Lack participation in the course decisions	2,642	1,499	2
SS12	Difficulty getting along with professors	1,642	,928	1
SS13	Assignment of disagreeable duties	1,928	1,328	2
SS14	Inadequate quality equipment for doing the duties	2,357	1,392	2
SS15	Excessive paperwork of the assignments	2,642	1,549	2
SS16	Very tight delivery times	2,642	1,691	2
SS17	Assignment of increased responsability	2,571	1,504	2
SS18	Assignment of new or unfamiliar duties	3,785	2,006	4
SS19	Frequent changes in the assignments	2,928	1,859	2
SS20	Periods of inactivity	3,071	1,899	2,5
SS21	Working overtime	2,642	1,336	3
	TOTAL STRESS LEVEL	2.247		

Table 2. Descriptive of the Stress level

RESULTS

Table 2 and Table 3 show the self-perception of the students about the stress and satisfaction level, respectively).

Regarding the stress analysis (Table 2), a low-stress level is appreciated (mean of 2,247 over 7), highlighting as the more stressful the *assignment of new or unfamiliar duties* (3,785), the *periods of inactivity* during the course due to breaks for exams or holidays (3,071), and the *frequent changes in the* assignments (2,928). On the other hand, the *inappropriate behaviors of their team colleagues* (1,142), *or professors* (1,428), and the *lack of recognition for good work* (1,571), are hardly perceived as stress variables.

		Mean	S. D.	Median
ST1	Previous university studies	5,071	1,141	5
ST2	University contributing to my life	4,785	1,050	5
ST3	Mission and vision of this university	4,357	,841	4
ST4	The opportunity to have a variety in this course	5,142	1,657	5
ST5	The workload of this master's first year	4,285	1,637	4
ST6	The workload of this course	4,000	1,467	4
ST7	The help of the professors	5,642	1,598	6
ST8	The help of the team colleagues	6,071	,730	6
ST9	The sense of belonging to a team	5,357	1,215	6
ST10	The materials/equipment available in the course	3,928	1,730	4
ST11	The option of doing my favorite tasks in the team	5,428	,851	6
ST12	The cooperation within the team	5,571	,937	6
ST13	The professional ethics perceived in the course	5,500	,940	5,5
ST14	The interest in the projects developed	4,928	1,639	5
ST15	The ability to improve the methods used	5,285	,825	5
ST16	The possibility to discuss about the assignments	5,642	,633	6
ST17	My opinion is considered	5,928	,828,	6
ST18	The attitudes of my team colleagues	5,714	1,204	6
ST19	The interaction with healthcare professionals	5,571	1,157	6
ST20	The commitment to the quality in the course	5,285	,825	5,5
ST21	Self- motivation for the good work	5,571	,851	6
ST22	The support of the professors	5,928	,997	6
ST23	The possibility of helping other colleagues	5,285	1,138	5,5
	TOTAL SATISFACTION LEVEL	5,229		

 Table 3. Descriptive of the Satisfaction level

Analyzing the data of satisfaction (Table 3), it is possible to appreciate a high satisfaction level according to the values obtained (mean of 5,229 over 7). Between all these values, stand out

as causes of more satisfaction with the *help of the team colleagues* (6,071), the feeling of *personal opinion is considered* (5,928), and the *support of the professors* (5,928). By contrast, the *materials/equipment* available for the course (3,928), the *workload of the course* (4,000), or *the workload of the whole master* (4,285) were chosen as the causes of major dissatisfaction.

Table 4 and Table 5 show the correlation matrix between the stress variables and the satisfaction variables, respectively. Both matrixes have been simplified, showing the rows or columns exclusively where appeared a high statistically significant level.

	SS4	SS5	SS6	SS10	SS11	SS12	SS13	SS14	SS17	SS19	SS20	SS21
SS1	0,315	0,489	,764**	,596*	0,359	0,469	0,205	0,132	0,059	0,091	0,019	0,017
SS2	,670**	,616*	0,323	,690**	,802**	,702**	,562*	,717**	0,272	0,461	0,186	0,323
SS4	1	,707**	0,073	,669**	,649*	,782**	,653*	,774**	0,241	0,467	0,148	0,114
SS5	,707**	1	0,455	0,466	,730**	,750**	0,374	,785**	0,485	,624*	0,506	,620*
SS8	-0,12	0,495	,643*	-0,16	0,336	0,366	0,026	0,227	0,358	0,24	0,413	,684**
SS11	,649*	,730**	0,251	,566*	1	,785**	,566*	,692**	0,234	0,377	0,172	0,507
SS12	,782**	,750**	0,406	0,478	,785**	1	,726**	,641*	0,322	0,43	0,103	0,261
SS16	0,526	0,411	-0,06	0,143	0,158	0,5	0,501	0,385	,751**	,676**	0,511	0,075
SS17	0,241	0,485	0,046	0,148	0,234	0,322	0,099	0,336	1	,868**	,819**	0,454
SS18	,561*	0,512	-0,17	0,409	,637*	0,492	0,34	,607*	,655*	,779**	0,489	0,457
SS19	0,467	,624*	0,144	0,353	0,377	0,43	0,06	,575*	,868**	1	,698**	0,484
SS20	0,148	0,506	0,112	0,117	0,172	0,103	0,063	0,484	,819**	,698**	1	,677**
SS21	0,114	,620*	0,282	0,079	0,507	0,261	0,028	,611*	0,454	0,484	,677**	1

Table 4. Correlations between the Stress variables

** Statistically significant at the 0,01 (bilateral) level. * Statistically significant at the 0,05 (bilateral) level.

	ST4	ST12	ST14	ST15	ST16	ST17	ST18	ST19	ST20	ST21	ST22
ST2	,681**	,056	,839**	,076	,338	,069	-,052	,614 [*]	,342	-,196	,058
ST4	1	,141	,684**	,418	,712**	,400	,138	,756**	,699**	,210	,193
ST7	,166	-,213	,019	,258	,320	,676**	,063	,119	,258	,105	,369
ST9	,240	,752**	,477	,274	,078	,256	,863**	,281	,350	,308	,530
ST10	,433	,217	,595 [*]	,069	,326	-,004	,100	,751**	,339	-,179	-,092
ST12	,141	1	,479	,071	-,019	-,240	,837**	,314	,170	,041	,129
ST13	,345	,349	,324	,694**	,323	,345	,340	,565 [*]	,793**	,672**	,779**
ST19	,756**	,314	,712**	,299	,614 [*]	,286	,126	1	,782**	,267	,305
ST20	,699**	,170	,414	,548 [*]	,652 [*]	,482	,166	,782**	1	,735**	,681**
ST21	,210	,041	-,189	,516	,407	,498	,171	,267	,735**	1	,776**

Table 5. Correlations between the Satisfaction variables

** Statistically significant at the 0,01 (bilateral) level. * Statistically significant at the 0,05 (bilateral) level.

Proceedings of the 16th International CDIO Conference, hosted on-line by Chalmers University of Technology, Gothenburg, Sweden, 8-10 June 2020 308

Between the correlations of both, the Stress variables (Table 4) and the Satisfaction variables (Table 5), it is possible to appreciate the great number of positive and highly significative correlations.

Attending to the results achieved in Table 4, some interesting relations can be highlighted, as the link between *the support of the professors* (SS2) and the *participation of the students in the course decision* (SS11), or how the *assumptions of responsibilities* by the students (SS17) make them see with critical eyes the *periods of inactivity* (S20) or the *frequent changes in the assignments* (S19).

Attending to the results achieved in Table 5 and with the focus on the highest correlations, it is possible to appreciate how students feel satisfaction when *university contributes to their lives* (ST2) in the sense of being able to *develop projects of interest* (ST14). Also, they feel satisfied with working in a team, when the *attitudes of the team members* are positive (ST18), as they strengthen the *sense of team membership* (ST9) and the *cooperation* principles (ST12).

Finally, this research has checked the correlations between stress and satisfaction levels (Table 6). This analysis has allowed identifying which variables can balance the relationship between stress and satisfaction. On this occasion, and as expected, most of the correlations are negative.

	ST2	ST12	ST13	ST14	ST19	ST20	ST21	ST22	ST23
SS1	-,204	-,677**	-,384	-,463	-,459	-,197	-,017	-,244	-,324
SS2	-,591*	-,151	-,526	-,618 [*]	-,692**	-,685**	-,295	-,575 [*]	-,593 [*]
SS5	-,410	-,141	-,529	-,425	-,515	-,562 [*]	-,467	-,698**	-,466
SS7	-,215	-,789**	,153	-,514	-,142	,249	,483	,309	-,072
SS8	,100	-,300	-,523	,021	-,455	-,568 [*]	-,716**	-,458	-,124
SS9	,254	,022	-,428	,278	,018	-,342	-,663**	-,718**	-,055
SS10	-,505	-,412	-,503	-,754**	-,508	-,398	,102	-,358	-,703**
SS11	-,296	-,227	-,791**	-,387	-,538 [*]	-,782**	-,671**	-,842**	-,657*
SS12	-,084	-,101	-,572 [*]	-,170	-,296	-,559 [*]	-,597*	-,860**	-,260
SS13	,098	-,088	-,400	-,073	-,071	-,261	-,301	-,701**	,015
SS18	-,498	,152	-,550 [*]	-,403	-,340	-,657*	-,463	-,700**	-,510
SS19	-,678**	,158	-,330	-,481	-,444	-,537 [*]	-,264	-,459	-,389
SS21	-,223	-,009	-,581*	-,188	-,604*	-,737**	-,618 [*]	-,482	-,484

Table 6. Correlations between the stress and the Satisfaction variables

** Statistically significant at the 0,01 (bilateral) level. * Statistically significant at the 0,05 (bilateral) level.

Table 6 shows the reduced correlation matrix where it is possible to highlight the important role of the *support of the professors* (ST22) to counter the effects of the stress in the students, *encouraging their incorporation into decision-making* about the course (SS11), and *facilitating interaction with them* (SS12).

DISCUSSION

Despite the low-stress level perceived by the students, variables linked to ambiguity or uncertainty (*assignment of unfamiliar duties* or *changes in assignments*) are appreciated as stressors. This result match with previous studies where ambiguity had an important role in stress and dissatisfaction levels (Yehya et al., 2020). To minimize the stress levels, this study reveals that the *appropriate behavior of the team and professors*, and the *recognition for good work* are good allies.

The satisfaction analysis proves that the students need to feel valued and cared for by the ecosystem integrated by supervisors and colleagues to reach their satisfaction, and how if it happens, other aspects as the scarcity of *materials/equipment* or the *workload* become relegated to the second place.

The correlations between the stress variables demonstrate that when students feel confidents and supported by professors, they assume responsibilities and demand more commitment from everyone, even themselves, taking ownership of their projects.

In the same line, the correlations between the satisfaction variables show that students are pleased with Higher Education Institutions when they learn by doing exciting projects, and the teamwork is made in a cooperative environment. These results confirm the idea of designing collaborative spaces for millennials established by Karakas et al. (2015).

Finally, as the cross-correlations between stress and satisfaction variables demonstrate, the support of the professors takes an active role in balancing these variables. Professors are called to help to design an atmosphere of trust during the course where students can interact and participate in the decision process.

CONCLUSIONS

It has been shown that a low level of stress and a high level of satisfaction is perceived by the students in this course developed under the CDIO methodologies. These results encourage further work under CDIO practices, supporting teamwork and the students' participation in making decisions about their assigned projects. The analysis also demonstrates the need for more significant commitment from professors, whose support for the teams has been shown to be essential to balance the stress and satisfaction levels.

Despite these favorable results for the CDIO practices, it is necessary to mention that this study has been made in the middle of the semester, and the designs of the products were in an early phase. An increment of the stress level is foreseen during the last days of the course when the students must present their final prototypes.

Likewise, to be able to generalize the conclusions drawn, it would be necessary to carry out this research with a larger sample and incorporating students from other courses under the CDIO methodologies to complement the study contrasting through an analysis of variance.

REFERENCES

Amirkhan, J. H., Bowers, G. K., & Logan, C. (2019). Appling stress theory to higher education: lessons form a study of first-year students. *Students in Higher Education*, ahead-of-print.

Anantatmula, V. S. (2015). Project manager leadership role in improving project performance. *Engineering Management Journal* 22(1), 13-22.

Backlund, F., & Garvare, R. (2019). Individual assessment of students working in project teams. *Proceedings of the 15th International CDIO Conference* (pp. 353-365). Aarthus, Denmark: Aarthus University.

Ballesteros-Sánchez, L., Ortiz-Marcos, I, & Rodríguez-Rivero, R. (2019). The Project Managers' challenges in a projectification environment. *International Journal of Managing Projects in Business 12*(3), 522-544.

Beauregard, T. A., & Henry, L. C. (2009). Making the link between work-life balance practices and organizational performance. *Human Resource Management Review 19*, 9-22.

Catano, V. M., Wiesner, W.H., & Hackett, R.D. (2009). *Recruitment and selection in Canada*. 7th Edition. Toronto: Nelson Education.

Cavallone, M., Manna, R., & Palumbo, R. (2020). Filling in the gaps in higher education quality: an analysis of Italian students' value expectations and perceptions. *International Journal of Educational Management 34*(1), 203-216.

Dizaho, E.K., Salleh, R., & Abdullah, A. (2017). Achieving Work Life Balance Through Flexible Work Schedules and Arrangements. *Global Business and Management Research: An International Journal 9*(1), 455-465.

Fontinha, R., Easton, S., & Van Laar, D. (2019). Overtime and quality of working life in academics and nonacademics: The role of perceived work-life balance. *International Journal of Stress Management* 26(2), 173-183

Gregory, A., Milner, S., & Windebank, J. (2013). Work-life balance in times of economic crisis and austerity. *International Journal of Sociology and Social Policy* 33(9/10), 528-541.

Holland, P., Tham, T. L., Sheehan, C., & Cooper, B. (2019). The impact of perceived workload on nurse satisfaction with work-life balance and intention to leave the occupation. *Applied Nursing Research* 49, 70-76.

Karakas, F., Manisaligil, A., & Sarigollu, E. (2015). Management learning at the speed of life: Designing reflective, creative, and collaborative space for millennials. *The International Journal of Management Education 13*, 237-248.

Kekana, H. P. P., Du Rand, E. A., & Van Wyk, N. C. (2007). Job satisfaction of registered nurses in a community hospital in the Limpopo Province in South Africa. *Curationis* 30(2), 24-35.

Lazarus, R., & Folkman, S. (1984). Stress, Appraisal, and Coping. New York: Springer.

Spielberger, C. D., & Reheiser, E. C. (1994). The Job Stress Survey: Measuring Gender Differences in Occupational Stress. *Journal of Social Behavior and Personality* 9(2), 199-218.

Theorell, T., Ahlberg-Hulten, G., Sigala, F., Perski, A., Soderholm, M., Kallner, A., & Eneroth, P. (1990). A psychosocial and biomedical comparison between men in six contrasting service occupations. *Work & Stress 4*(1), 51-63.

Yehya, A., Sankaranarayanan, A., Alkhal, A., Alnoimi, H., AAlmeer, N., Khan, A., & Ghuloum, S. (2020). Job satisfaction and stress among healthcare workers in public hospitals in Qatar. *Archives of Envirnomental & Occupational Health* 75(1), 10-17.

BIOGRAPHICAL INFORMATION

Rocío Rodríguez-Rivero is Professor in the Department of Industrial Management, Business Administration and Statistics at ETSI Industriales – UPM. She is focused on systematic project management procedures, hence supporting both courses and mentoring the adequate progress of the different projects.

Luis Ballesteros-Sánchez is a Professor in the Department of Industrial Management, Business Administration and Statistics at ETSI Industriales – UPM. He is focused on creating team procedures and on the resolution of conflicts in multidisciplinary teams, mentoring, and coordinating also the Management Engineering track.

Andrés Díaz Lantada is a Professor in the Department of Mechanical Engineering at ETSI Industriales – UPM. His research activities are aimed at the development of biodevices using modern design, modeling, and manufacturing technologies, and he incorporates these results to subjects linked to product development. He is an Editorial Board Member of the International Journal of Engineering Education and CDIO contact at UPM. He has received the "TU Madrid Young Researcher Award" and the "TU Madrid Teaching Innovation Award" in 2014 and the "Medal of the Spanish Academy of Engineering to Young Researchers" in 2015.

Jesús Juan Ruíz is a Professor in the Department of Industrial Management, Business Administration and Statistics at ETSI Industriales – UPM. He supports both courses with experimental design expertise and statistical validation of implementation and operation results.

Miguel Ángel Peláez García is a Professor in the Department of Industrial Management, Business Administration and Statistics at ETSI Industriales – UPM. He supports these subjects by means of his expertise in medical device regulation towards optimized marketability processes.

Ana Moreno Romero is a Professor in the Department of Industrial Management, Business Administration and Statistics at ETSI Industriales – UPM. She is currently Deputy Vice-Dean for Social Responsibility and is especially focused on the management of change in complex organizations and on professional development.

Enrique Chacón Tanarro is a Professor in the Department of Mechanical Engineering at ETSI Industriales – UPM. His research activities are linked to several fields of Mechanical Engineering, including most areas of tribology and contact phenomena, machine performance assessment and systematic product development.

Rafael Borge García is a Professor in the Department of Chemical Engineering at ETSI Industriales – UPM. He is our expert on sustainable engineering design and supports both courses with the systematic assessment of products' life-cycles for enhanced selection and definition of geometries, materials, and processes.

Rafael Ramos Díaz is a Professor in the Department of Industrial Management, Business Administration and Statistics at ETSI Industriales – UPM. He supports both courses with innovative approaches to entrepreneurship.

Corresponding author

Prof. Dr. Rocío Rodríguez-Rivero Industrial Engineering Department Universidad Politécnica de Madrid c/ Jose Gutierrez Abascal 2, 28006 Madrid, Spain rocio.rodriguez@upm.es

This work is licensed under a <u>Creative</u> <u>Commons Attribution-NonCommercial-</u> <u>NoDerivatives 4.0 International License</u>.